LONGTON LANE PRIMARY SCHOOL

Belíeve and Achíeve'
Amendments made since last review
Teachers have gone through the policy for their year group checking and crossing out any methods that are not taught in school.

Policy agreed / reviewed $19^{\text {th }}$ March 2024	Next review due Spring 2026
Signed on behalf of the Governing Body	
	Signed by headteacher

Progression in Calculation Policy

NB. Users should familiarise themselves with the introduction (pp 2-10) to this document before referring to individual year group guidance.

Introduction

At the centre of the mastery approach to the teaching of mathematics is the belief that all pupils have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, pupils must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This document outlines the different calculation strategies that should be taught and used in Years 1 to 6, in line with the requirements of the 2014 Primary National Curriculum.

Background

The 2014 Primary National Curriculum for mathematics differs from its predecessor in many ways. Alongside the end of Key Stage year expectations, there are suggested goals for each year; there is also an emphasis on depth before breadth and a greater expectation of what pupils should achieve.

One of the key differences is the level of detail included, indicating what pupils should be learning and when. This is suggested content for each year group, but schools have been given autonomy to introduce content earlier or later, with the expectation that by the end of each key stage the required content has been covered.

For example, in Year 2, it is suggested that pupils should be able to 'add and subtract one-digit and twodigit numbers to 20 , including zero' and a few years later in Year 5 , they should be able to 'add and subtract whole numbers with more than four digits, including using formal written methods (columnar addition and subtraction)'.

In many ways, these specific objectives make it easier for teachers to plan a coherent approach to the development of pupils' calculation skills, and the expectations of using formal methods is rightly coupled with the explicit requirement for pupils to use multiple representations, including concrete manipulatives and images or diagrams -a key component of the mastery approach.

Purpose

The purpose of this document is threefold. Firstly, in this introduction, it outlines the structures for calculations, which enable teachers to systematically plan problem contexts for calculations to ensure pupils are exposed to both standard and non-standard problems. Secondly, it makes teachers aware of the strategies that pupils are formally taught within each year group, which will support them to perform mental and written calculations. Finally, it supports teachers in identifying appropriate pictorial representations and concrete materials to help develop understanding.

The policy only details the strategies; teachers must plan opportunities for pupils to apply these, for example, when solving problems, or where opportunities emerge elsewhere in the curriculum.

How to use the document

For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. Please note that the concrete and pictorial representation examples are not exhaustive, and teachers and pupils may well come up with alternatives. The purpose of using multiple representations is to give pupils a deep understanding of a mathematical concept and they should be able to work with and explain concrete, pictorial and abstract representations, and explain the links between different representations. Depth of understanding is achieved by moving between these representations. For example, if a child has started to use a pictorial representation, it does not mean that the concrete
cannot be used alongside the pictorial. If a child is working in the abstract, depth can be evidenced by asking them to exemplify their abstract working using a concrete or pictorial representation and to explain what they have done using the correct mathematical vocabulary; language is, of course, one abstract representation but is given particular significance in the national curriculum.

Mathematical language

The 2014 National Curriculum is explicit in articulating the importance of pupils using the correct mathematical language as a central part of their learning. Indeed, in certain year groups, the non-statutory guidance highlights the requirement for pupils to extend their language around certain
"The quality and variety of language that pupils hear and speak are key factors in developing their mathematical vocabulary and presenting a mathematical justification, argument or proof."

2014 Maths Programme of Study concepts.

Suggested language structures accompany each strategy outlined in this document. These build on one another systematically, which supports pupils in making links between and across strategies as they progress through primary school.

\checkmark	x
ones	units
is equal to	equals / makes
zero	oh (the letter O)

New vocabulary should be introduced in a suitable context (for example, with relevant real objects, manipulatives, pictures or diagrams) and explained precisely. High expectations of the mathematical language used are essential, with teachers modelling accurate mathematical vocabulary and expecting pupils' responses to include it infullsentences.

Presentation of calculations

You will see that throughout this document, calculations are presented in a variety of ways. It is important for pupils' mathematical understanding to experience and work with calculations and missing numbers in different positions relative to the $=$ symbol. Examples used in classwork and independent work should reflect this.

Estimation

Pupils are expected to use their developing number sense from Year 1 to make predictions about the answers to their calculations. As their range of mental strategies increases, these predictions and, later, estimates should become increasingly sophisticated and accurate. All teaching of calculation should emphasise the importance of making and using these estimates to check, first, the sense and, later, the accuracy of their calculations.

Developing number sense

Fluency in arithmetic is underpinned by a good sense of number and an ability to understand numbers as both a concept (e.g. 7 is the value assigned to a set of seven objects) and as something resulting from a process (three beads and four more beads gives seven beads altogether or $3+4=7$). Understanding that a number can be partitioned in many ways (e.g. $7=4+3 ; 5+2=7 ; 1+6=7$) is key to being able to use numbers flexibly in calculating strategies. The part-whole model and, later, bar models, are particularly useful for developing a relational understanding of number. Pupils who are fluent in number bonds (initially within ten and then within twenty) will be able to use the 'Make ten' strategy efficiently, enabling them to move away from laborious and unreliable counting strategies, such as 'counting all' and 'counting on'. Increasing fluency in inefficient strategies will allow pupils to develop flexible and interlinked approaches to addition and subtraction. At a later stage, applying multiplication and division facts, rather than relying on skip-counting, will continue to develop flexibility with number.

Structures and contexts for calculations

There are multiple contexts (the word problem or real-life situation, within which a calculation is required) for each mathematical operation (i.e. addition) and, as well as becoming fluent with efficient calculating strategies, pupils also need to become fluent in identifying which operations are required. If they are not regularly exposed to a range
> "In a technatogical aqeIfinh which most
calculations are done on
armes, cannot be
> thdIaktergy which calculation to do is more important than being able to do the calculation."

> Derek Haylock (2014); Mathematics Explained for Primary Teachers, p. 56 of different contexts, pupils will find it difficult to apply their understanding of the four operations. For each operation, a range of contexts can be identified as belonging to one of the conceptual 'structures' defined below.

The structure is distinct from both the operation required in a given problem and the strategy that may be used to solve the calculation. In order to develop good number sense and flexibility when calculating, children need to understand that many strategies (preferably the most efficient one for them!) can be used to solve a calculation, once the correct operation has been identified. There is often an implied link between the given structure of a problem context and a specific calculating strategy. Consider the following question: A chocolate bar company is giving out free samples of their chocolate on the street. They began the day with 256 bars and have given away 197. How many do they have remaining? The reduction context implicitly suggests the action of 'taking away' and might lead to a pupil, for example, counting back or using a formal algorithm to subtract 197 from 256 (seeing the question as $256-197=$?). However, it is much easier to find the difference between 197 and 256 by adding on (seeing the question as $197+?=256$). Pupils with well-developed number sense and a clear understanding of the inverse relationship between addition and subtraction will be confident in manipulating numbers in this way.

Every effort is made to include multiple contexts for calculation in the Mathematics Mastery materials but, when teachers adapt the materials (which is absolutely encouraged), having an awareness of the different structures and being sure to include a range of appropriate contexts, will ensure that pupils continue to develop their understanding of each operation. The following list should not be considered to be exhaustive but defines the structures (and some suggested contexts) that are specifically included in the statutory objectives and the non-statutory guidance of the national curriculum. Specific structures and contexts are introduced in the Mathematics Mastery materials at the appropriate time, according to this guidance.

Importance of knowns vs unknowns and using part-whole understanding

One of the key strategies that pupils should use to identify the correct operation(s) to solve a given problem (in day-to-day life and in word problems) is to clarify the known and unknown quantities and identify the relationships between them. Owing to the inverse relationship between addition and subtraction, it is better to consider them together as 'additive reasoning', since changing which information is unknown can lead to either addition or subtraction being more suitable to calculate a solution for the same context. For the same reason, multiplication and division are referred to as 'multiplicative reasoning'. Traditionally, approaches involving key vocabulary have been the main strategy used to identify suitable operations but owing to the shared underlying structures, key words alone can be ambiguous and lead to misinterpretation (see for example the question below about Samir and Lena, where the key word 'less' might be identified, but addition is required to solve the problem).

A more effective strategy is to encourage pupils to establish what they know about the relationship between the known and unknown values and if they represent a part or the whole in the problem, supported through the use of part-whole models and/or bar models. In the structures exemplified
below, the knowns and unknowns have been highlighted. Where appropriate, the part-whole relationships have also been identified. Pupils should always be given opportunities to identify and discuss these, both when calculating and when problem-solving.

Standard and non-standard contexts

Using key vocabulary as a means of interpreting problems is only useful in what are in this document defined as 'standard' contexts, i.e. those where the language is aligned with the operation used to solve the problem. Take the following example:

First there were 12 people on the bus. Then three more people got on. How many people are on the bus now?

Pupils would typically identify the word 'more' and assume from this that they need to add the values together, which in this case would be the correct action. However, in non-standard contexts, identifying key vocabulary is unhelpful in identifying a suitable operation. Consider this question:

First there were 12 people on the bus and then some more people got on at the school. Now there are 15 people on the bus. How many people got on at the school?

Again the word 'more' would be identified, and a pupil may then erroneously add together 12 and 15 . It is therefore much more helpful to consider known and unknown values and the relations between them.

Overexposure to standard contexts and lack of exposure to non-standard contexts will mean pupils are more likely to rely on 'key vocabulary' strategies, as they see that this works in most of the cases they encounter. It is therefore important, when adapting lesson materials, that non-standards contexts are used systematically, alongside standard contexts.

Note: the 'first... then... now' structure is used heavily in KS1 to scaffold pupils' understanding of change structures. Once pupils are confident with the structures, such linguistic scaffolding can be removed, and question construction can be changed to expose pupils to a greater range of nuance in interpreting problems. For example, the second and third reduction problems could be reworded as follows:

Kieran took two plates out of his cupboard for dinner. There were four left. How many plates were in the cupboard to begin with?

There were six plates in the cupboard before Kieran took some out for dinner. If there were four plates left in the cupboard, how many did Kieran take out?

These present the same knowns and unknowns, and therefore the same bar models and resulting equations to solve the problems; however, the change in wording makes them more challenging to pupils who have only worked with a 'first... then... now' structure so far.

Part-whole structures

Combination (aggregation)/partitioning

combining two or more discrete quantities/splitting one quantity into two or more sub-quantities
Hakan and Sally have made a stack of their favourite books. Four books belong to Hakan, three to Sally. How many books are in the stack altogether?
"I know both parts. One part is four and the other part is three. I don't know the whole.
I need to add the parts of three and four to find the whole."

$$
4+3=? \quad 3+4=?
$$

(Only one problem has been written for combination as, owing to the commutativity of addition, the only change in question wording would be to swap Hakan and Sally's names. The resulting bar model and calculation would be identical.)

Sally and Hakan have made a stack of their favourite books. There are seven books altogether. If three of them are Sally's, how many belong to Hakan?
"I know the whole is seven and that one of the parts is three. I don't know the other part. I need to add on from three to make seven or subtract three from seven to find the other part.

$$
3+?=7 \quad 7-3=?
$$

Sally and Hakan have made a stack of their favourite books. There are seven books altogether. If four of them are Hakan's, how many belong to Sally?
"I know the whole is seven and that one of the parts is four. I don't know the other part. I need to add on from four to make seven or subtract four from seven to find the other part."

$$
4+?=7 \quad 7-4=?
$$

Note: all part-whole contexts are considered to be 'standard', as the language of part-whole is unambiguous.

Comparison structures

Comparison structures involve a relationship between two quantities; their relationship is expressed as a difference. The structures vary by which of the values are known/unknown (the larger quantity, the smaller quantity and/or their difference). Part-whole language is not used here because the context contains not one single 'whole', but instead two separate quantities and it is the relationship between them being considered. Comparison bar models are therefore used to model these structures, which are known to be the most challenging for pupils to interpret.

Smaller quantity and larger quantity are known (comparative difference)

Standard

Navin has saved $£ 19$ from his pocket money. Sara has saved $£ 31$ from her pocket money. How much more has Sara saved than Navin? or How much less has Navin saved than Sara?
"I know one quantity is 19 and the other quantity is 31 . I don't know the difference. To find the Difference I could add on from 19 to make 31 or I could subtract 19 from 31 ."

$$
19+?=31 \quad 31-19=?
$$

Smaller quantity and difference are known (comparative addition)

Standard

Ella has six marbles. Robin has three more than Ella. How many marbles does Robin have?
"I know the smaller quantity is six. I know the difference is three. I don't know the larger quantity. To find the larger quantity I need to add three to six."

$$
6+3=?
$$

Non-standard

Samir and Lena are baking shortbread but Lena's recipe uses 15 g less butter than Samir's. If Lena needs to use 25 g of butter, how much does Samir need?
"I know the smaller quantity is 25 . I know the difference between the quantities is 15 . I don't know the larger quantity. To find the larger quantity I need to add 15 to 25 ."

$$
?-15=25 \quad 25+15=?
$$

Larger quantity and difference are known (comparative subtraction)

Non-standard

Ella has some marbles. Robin has three more than Ella and he has nine marbles in total. How many marbles does Ella have?
"I know the larger quantity is nine. I know the difference between the quantities is three. I don't know the smaller quantity. To find the smaller quantity I need to add on from three to make nine or subtract three from nine."

$$
?+3=9 \quad 9-3=?
$$

Standard

Samir's shortbread recipe uses 40 g of butter. Lena's recipe uses 15 g less butter. How much butter does Lena need?
"I know one quantity is 40 . I know the difference between the quantities is 15 . I don't know the smaller quantity but I know it is 15 less than 40 . To find the smaller quantity, I need to subtract 15 from 40."

$40-15=? \quad ?+15=40$

Multiplicative reasoning

Repeated grouping structures

repeated addition

groups (sets) of equal value are combined or repeatedly added

There are four packs of pencils. Each contains five pencils. How many pencils are there?

"I know there are four equal parts and that each part has a value of five. I don't know the value of the whole. To find the whole, I need to multiply four and five."

$$
\begin{array}{r}
5+5+5+5=? \\
5 \times 4=?
\end{array}
$$

repeated subtraction (grouping)
groups (sets) of equal value are partitioned from the whole or repeatedly subtracted

There are 12 counters. If each child needs three counters to play the game, how many children can play?

"I know the whole is twelve and that the value of each equal part is three. To find the number of equal parts, I need to know how many threes are in twelve."

$$
3 \times ?=12 \quad 12 \div 3=?
$$

sharing (into equal groups)

the whole is shared into a known number (must be a positive integer) of equal groups (sets)

Share twelve counters equally between three children. How many counters does each child get?

"I know the whole is twelve and the number of equal parts is three. I don't know the value of each part. To find the value of each part, I need to know what goes into twelve three times."

$$
? \times 3=12 \quad 12 \div 3=?
$$

Cartesian product of two measures correspondence

calculating the number of unique combinations that can be created from two (or more) sets

"I know how many hats there are and I know how many tops there are. I don't know the different number of outfits that can be created. To find the number of outfits, I need to find how many different tops can be worn with each hat or how many different hats can be worn with each top."

$$
4 \times 3=? \quad 3 \times 4=?
$$

[^0]| |
| :---: |
| Scaling |
| scaling up |
| ('times greater / times as much') |

the original value is increased by a given scale factor

Rita receives $£ 2$ pocket money every week. Sim earns ten times as much money for her paper round. How much money does Sim earn?

"I know one value is two and I know the second value is ten times greater. I don't know the second value. To find the second value, I need to multiply two by ten."

$$
2 \times 10=\text { ? }
$$

scaling up ('times as many')

the value of the original quantity is increased by a given scale factor

The Albert Hall can hold five times as many people as the Festival Hall. If the Festival Hall holds 1000 people, how many does the Albert Hall hold?

"I know one value is 1000 and I know the second value is five times greater. I don't know the second value. To find the second value, I need to multiply 1000 by five." $1000 \times 5=$?

scaling down

('times smaller/times less')
the original value is reduced by a given scale factor
The house in my model village needs to be half the height of the church. If the church is 8 cm tall, how tall does the house need to be?

"I know one value is eight and I know the second value is half as great. I don't know the second value. To find the second value, I need to halve eight (or divide it by two)."

Half of 8 is ? $8 \div 2=$?

scaling down ('times fewer')

the value of the original quantity is decreased by a given scale factor

Anouska's garden pond has ten times fewer frogs than fish. If there are fifty fish, how many frogs are there?

"I know one value is 50 and I know the second value is ten times less. I don't know the second value. To find the second value, I need to divide fifty by ten." $50 \div 10=$?

Progression in calculations Year 1

National curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- Add and subtract one-digit and two-digit numbers to 100, including zero (N.B. Year 1 N.C. objective is to do this with numbers to 20).
- Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones, a two-digit number and tens, 2 two-digit numbers; add 3 one-digit numbers (Year 2).
- Represent and use number bonds and related subtraction facts within 20.
- Given a number, identify 1 more and 1 less.
- Show that addition of two numbers can be done in any order (commutative) but subtraction of one number from another cannot (Year 2).
- Recognise the inverse relationship between addition and subtraction and use this to solve missing number problems (Year 2).

The following objectives should be planned for lessons where new strategies are being

 introduced and developed:- Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equal (=) signs.
- Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems, such as $7=?-9$.
- Solve problems with addition and subtraction:
- Using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- Applying their increasing knowledge of mental methods

Teachers should refer to the definitions and guidance on the structures for addition and subtraction to provide a range of appropriate real-life contexts for calculations.

Y1 Addition

Strategy \& guidance	CPA
Count all Joining two groups and then recounting all objects using one-to-one correspondence	$3+4=7$
Counting on As a strategy, this should be limited to adding small quantities only (1, 2 or 3) with pupils understanding that counting on from the greater number is more efficient.	
Part-part-whole Teach both addition and subtraction alongside each other, as pupils will use this model to identify the inverse relationship between them. This model begins to develop the understanding of the commutativity of addition, as pupils become aware that the parts will make the whole in any order.	

Adding 1, 2, 3 more
Here the emphasis
should be on the
language rather than
the strategy. As pupils
are using the
beadstring, ensure that
they are explaining
using language such
as;
' more than 5 is equal
to 6.'
'2 more than 5 is equal
to 7. .
'8 is 3 more than 5 '
Over time, pupils
should be
encouraged to rely
more on their
number bonds
knowledge than on
counting strategies.

Y1 Subtraction

Strategy \& guidance	CPA
Taking away from the ones When this is first introduced, the concrete representation should be based upon the diagram. Real objects should be placed on top of the images as one-to-one correspondence so that pupils can take them away, progressing to representing the group of ten with a tens rod and ones with ones cubes.	
Counting back Subtracting 1, 2, or 3 by counting back Pupils should be encouraged to rely on number bonds knowledge as time goes on, rather than using counting back as their main strategy.	$16-2=14$

[^1]

| Taking away from |
| :--- | :--- |
| the tens |
| Pupils should identify |
| that they can also take |
| away from the tens |
| and get the same |
| answer. |
| This reinforces their |
| knowledge of number |
| bonds to 1o and |
| develops their |
| application of number |
| bonds for mental |
| strategies. |

Mathematics
Mastery

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Teachers should refer to definitions and guidance on the structures for multiplication and division to provide a range of appropriate real-life contexts for calculations.

Y1 Multiplication

Strategy \& guidance	CPA
Skip counting in multiples of 2, 5, 10 from zero The representation for the amount of groups supports pupils' understanding of the written equation. So two groups of 2 are 2, 4. Or five groups of 2 are $2,4,6,8,10$. Count the groups as pupils are skip counting. Number lines can be used in the same way as the bead string. Pupils can use their fingers as they are skip counting.	$4 \times 5=20$
Making equal groups and counting the total How this would be represented as an equation will vary. This could be 2×4 or 4×2. The importance should be placed on the vocabulary used alongside the equation. So this picture could represent 2 groups of 4 or 4 twice.	Draw 40 to show $2 \times 3=6$

Mathematics Mastery

Solve multiplications using repeated addition

This strategy helps pupils make a clear link between multiplication and division as well as exemplifying the ‘repeated addition’ structure for multiplication. It is a natural progression from the previous 'count all' strategy as pupils can be encouraged to 'count on'. However, as number bonds knowledge grows, pupils should rely more on these important facts to calculate $3 \times 3=3+3+3$
 efficiently.

How matriy apoles are there allogether?
$3+3+3=9$

Y1 Division

Strategy \& guidance	CPA
Sharing objects into groups	$10 \div 2=5$
Pupils should become familiar with division equations through working practically.	
The division symbol is not formally taught at this stage.	There, aqe fie sweete: fing groups of its Theite aife \qquad founf (b)

Progression in calculations Year 2

National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; 2 two-digit numbers; adding three one-digit numbers.
- Add and subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds (Year 3).
- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 .
- Find 10 or 100 more or less than a given number (Year 3).
- Show that addition of two numbers can be done in any order (commutative) but subtraction of one number from another cannot.
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
- Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction (Year 3).

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures; apply increasing knowledge of mental and written methods.
- Solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction. (Year 3)

Teachers should refer to the definitions and guidance on the structures for addition and subtraction to provide a range of appropriate real-life contexts for calculations.

Y2 Addition

| Strategy \& guidance | |
| :--- | :--- | :--- | :--- |
| Part-part-whole | |
| Pupils explore the different
 ways of making 2o. They
 can do this with all
 numbers using the same
 representations.
 This model develops
 knowledge of the inverse
 relationship between
 addition and subtraction
 and is used to find the
 answer to missing number
 problems. | |

[^2] only. For further information, please see our terms and conditions at www.mathematicsmastery.org/terms-and-conditions

Mathematics
Mastery

Strategy \& guidance	CPA									
Using known facts to create derived facts Dienes blocks should be used alongside pictorial and abstract representations when introducing this strategy.	$\because+\therefore$ $=\therefore$ $3+4=7$ $\\|+\\| \\|$ $=\\| \\|\\| \\|$ $30+40=70$ $\\|\\|$ leads to $\square \square+\square \square$ $=\square \square$ leads to \square $\square \square \square$ $300+400=700$									
Partitioning one number, then adding tens and ones Pupils can choose themselves which of the numbers they wish to partition. Pupils will begin to see when this method is more efficient than adding tens and taking away the extra ones, as shown.										
Round and adjust (sometimes known as a compensating strategy) Pupils will develop a sense of efficiency with this method, beginning to see when rounding and adjusting is more efficient than adding tens and then ones.	$22+17=39$									

Y2 Subtraction

Strategy \& guidance	CPA
Counting back in multiples of ten and one hundred	
Using known number facts to create derived facts Dienes blocks should be used alongside pictorial and abstract representations when introducing this strategy, encouraging pupils to apply their knowledge of number bonds to add multiples of ten and 100 .	$\begin{aligned} & 8-4=4 \\ & \text { leads to } \end{aligned}$ $80-40=40$ leads to $800-400=400$
Subtracting tens and ones Pupils must be taught to partition the second number for this strategy as partitioning both numbers can lead to errors if regrouping is required.	

Mathematics
Mastery

Mathematics
Mastery
 strong understanding of place value and concrete manipulatives should be used alongside.

Pupils are introduced to calculations that require two instances of regrouping (initially from tens to one and then from hundreds to tens). E.g. 232 -157 and are given plenty of practice using concrete manipulatives and images alongside their formal written methods, ensuring that important steps are not missed in the recording.

Caution should be exercised
 when introducing calculations requiring 'regrouping to regroup' (e.g. 204-137) ensuring ample teacher modelling using concrete manipulatives and images.

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
- Recall and use multiplication and division facts for the 3 and 4 multiplication tables (Year 3).
- Show that multiplication of two numbers can be done in any order (commutative) but division of one number by another cannot.

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equal $(=)$ signs.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in context.

Teachers should refer to definitions and guidance on the structures for multiplication and division to provide a range of appropriate real-life contexts for calculations.

Strategy \& guidance
Arrays to represent multiplication equations
Concrete manipulatives and images of familiar objects begin to be organised into arrays and, later, are shown alongside dot arrays. It is important to discuss with pupils how arrays can be useful.
Pupils begin to understand multiplication in a more abstract fashion, applying their skip cunting skills to identify the multiples of the $2 x$, 5x and lox tables.
The relationship between multiplication and division also begins to be demonstrated.
Multiplication is commutative
Pupils should understand that an array and, later, bar models can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.

Y2 Division

Strategy \& guidance	
Division as sharing	
Here, division is shown as	
sharing.	
If we have ten pairs of	
scissors and we share them	
between two pots, there will	
be 5 pairs of scissors in	
each pot.	

Mathematics
Mastery

\begin{tabular}{|c|c|}
\hline Strategy \& guidance \& CPA \\
\hline \begin{tabular}{l}
Use of part-part-whole model to represent division equations and to emphasise the relationship between division and multiplication \\
Pupils use arrays of concrete manipulatives and images of familiar objects to solve division equations. \\
They begin to use dot arrays to develop a more abstract concept of division. \\
It is important to highlight that with multiplication and division, the parts are of equal value as this is different to how this model is used for addition and subtraction.
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 15 \div 5=3 \\
\& 15 \div 3=5
\end{aligned}
\]

Write the division equations that the array represents.

The whole is nine. There are three equal parts. What is the value of each part?
\end{tabular}

\hline
\end{tabular}

Mathematics Mastery

Progression in calculations Year 3

National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers mentally, including:
- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds
- add and subtract numbers with up to four digits, using formal written methods of columnar addition and subtraction (four digits is Year 4)
- find 10 or 100 more or less than a given number
- find 1000 more or less than a given number (Year 4)
- estimate the answer to a calculation and use inverse operations to check answers

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction

> Teachers should refer to definitions and guidance on the structures for addition and subtraction to provide a range of appropriate real-life contexts for calculations.

Y3 Addition \& Subtraction

Strategy \& guidance	CPA
Add and subtract numbers mentally, including:	It is important to model the mental strategy using concrete manipulatives in the first instance and pupils should be able to exemplify their own strategies using
- a three-digit number and ones;	manipulatives if required, with numbers
appropriate to the unit they are working on	
- a three-digit number and tens;	(3-digit numbers in Units 1 \& 4; 4-digit
Pupils learn that this is an appropriate strategy when they are able to use known and derived number facts or other mental strategies to complete mental calculations with accuracy.	numbers in Unit 13). However, pupils should be encouraged to use known facts to derive answers, rather than relying on counting manipulatives or images.

To begin with, some pupils will prefer to use this strategy only when there is no need to regroup, using number facts within 10 and derivations. More confident pupils might choose from a range of mental strategies that avoid written algorithms, including (but not exhaustively):

- known number facts within 20 ,
- derived number facts,
- 'Make ten',
- round and adjust

See Year 2 guidance for exemplification of these -the use of concrete manipulatives other than Dienes blocks is important in reinforcing the use of these strategies.

It is important that pupils are given plenty of (scaffolded) practice at choosing their own strategies to complete calculations efficiently and accurately. Explicit links need to be made between familiar number facts and the calculations that they can be useful for and pupils need to be encouraged to aim for efficiency.

No regrouping

$345+30 \quad 274-50$
$1128+300 \quad 1312-300$
$326+342 \quad 856-724$

$416+25$
232-5
$383+130$
455-216
$611+194$
130-40
$1482+900$
2382-500

\section*{| Strategy \& guidance |
| :--- |
| $\begin{array}{l}\text { Written column method for calculations that } \\ \text { require regrouping with up to 4-digits }\end{array}$ |}

CPA

As for the mental strategies, pupils should be exposed to concrete manipulatives modelling the written calculations and should be able to represent their written work pictorially or with concrete manipulatives when required. Again, they should be encouraged to calculate with known and derived facts and should not rely on counting images or manipulatives.
Direct teaching of the columnar method should require at least one element of regrouping, so that pupils are clear about when it is most useful to use it. Asking them 'Can you think of a more efficient method?' will challenge hem to apply their number sense / number facts to use efficient mental methods where possible.

As in Year 2, pupils should be given plenty of practice with calculations that require multiple separate instances of regrouping. In Year 3 they become more familiar with calculations that require 'regrouping to regroup'. Understanding must be secured through the considered use of manipulatives and images, combined with careful use of language.

Pupils should be challenged as to whether this is the most efficient method, considering whether mental methods (such as counting on, using known number facts, round and adjust etc.) may be likelier to produce an accurate solution.

Pupils requiring support might develop their confidence in the written method using numbers that require no regrouping.

See Unit materials for extra guidance on this strategy.

Strategy \& guidance	CPA
Find 10, 100 more or less than a given number	$142+100=242$
As pupils become familiar with numbers up to	
1ooo, place value should be emphasised and	
comparisons drawn between adding tens, hundreds	
(and, in the last unit of the Summer term,	
thousands), including use of concrete manipulatives	
and appropriate images.	

Mathematics Mastery

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- count from o in multiples of $4,8,50$ and 100
- recall and use multiplication and division facts for the $3,4,6$, and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

Teachers should refer to definitions and guidance on the structures for multiplication and division to provide a range of appropriate real-life contexts for calculations.

Y3 Multiplication

Strategy \& guidance	
Doubling to derive new multiplication facts	$3 \times 3=9$
Pupils continue to make	
use of the idea that facts	
from easier times tables	
can be used to derive	
facts from related times	
tables using doubling as	
a strategy.	
This builds on the	
doubling strategy	
from Year 2.	

Strategy \& guidance
Skip counting in multiples of $\mathbf{2 ,} \mathbf{3 ,} \mathbf{4}, \mathbf{5}$, $\mathbf{6 , 8}$ and 10
Rehearsal of previously learnt tables as well as new content for Year 3 should be incorporated into transition activities and practised regularly.
Use of part-part- whole model with arrays and bar models to establish commutativity and inverse relationship between multiplication and division
In these contexts pupils are able to identify all the equations in a fact family. Also with digits

Strategy \& guidance	CPA
Multiplying by 10 and 100 Building on the ten times greater work, pupils use appropriate Dienes blocks and place value counters to multiply 2, 3, 4, 5 and 10 by 10, 100 and 1000 .	$\begin{aligned} & 5 \times 1=5 \\ & 5 \times 10=50 \\ & 3 \times 100=300 \end{aligned}$
Using known facts for multiplying by multiples of 10 and 100 Pupils' growing understanding of place value, allows them to make use of known facts to derive multiplications using powers of 10 . It is important to use tables with which they are already familiar (i.e. not 7 or 9 tables in Year 3)	

Mathematics Mastery

Y3 Division

Mathematics Mastery

Progression in calculations Year 4

National curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers with up to four digits, using the formal written methods of columnar addition and subtraction where appropriate
- find 1000 more or less than a given number
- estimate and use inverse operations to check answers to a calculation
N.B. There is no explicit reference to mental calculation strategies in the programmes of study for Year 4 in the national curriculum. However, with an overall aim for fluency, appropriate mental strategies should always be considered before resorting to formal written procedures, with the emphasis on pupils making their own choices from an increasingly sophisticated range of strategies.

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why
- solve simple measure and money problems involving fractions and decimals to two decimal places

Y4 Addition \& Subtraction

Strategies \& Guidance	CPA
Count forwards and backwards in steps of 10,100 and 1000 for any number up to 10 ooo. Pupils should count on and back in steps of ten, one hundred and one thousand from different starting points. These should be practised regularly, ensuring that boundaries where more than one digit changes are included. Count forwards and backwards in tenths and hundredths	Pay particular attention to boundaries where regrouping happens more than once and so more than one digit changes. $\text { E.g. } 990+10 \text { or } 19.9+0.1$
Using known facts and knowledge of place value to derive facts. Add and subtract multiples of 10 , 100 and 1000 mentally Pupils extend this knowledge to mentally adding and subtracting multiples of 10 , 100 and 1000. Counting in different multiples of 10,100 and 1000 should be incorporated into transition activities and practised regularly.	
Adding and subtracting by partitioning one number and applying known facts. By Year 4 pupils are confident in their place value knowledge and are calculating mentally both with calculations that do not require regrouping and with those that do.	See Y3 guidance on mental addition \& subtraction, remembering that use of concrete manipulatives and images in both teaching and reasoning activities will help to secure understanding and develop mastery.

Strategies \& Guidance	CPA
Round and adjust Pupils should recognise that this strategy is useful when adding and subtracting near multiples of ten. They should apply their knowledge of rounding. It is very easy to be confused about how to adjust and so visual representations and logical reasoning are essential to success with this strategy. Build flexibility by completing the same calculation in a different order.	$3527+296=3827-4$ Completing the same calculation but adjusting first: $3527+296=3523+300$ $4523-3997=523+3$ Completing the same calculation but adjusting first: $4523-3997=4526-4000$
Near doubles Pupils should be able to double numbers up to 100 and use this to derive doubles for multiples of ten. These facts can be adjusted to calculate near doubles.	$1600+1598=\text { double } 1600-2$

Mathematics
Mastery

Strategies \& Guidance	CPA	
Calculating with decimal numbers	$\begin{aligned} & 24.2+13.4=1 \end{aligned}$	
Assign different values to Dienes equipment. If a Dienes 100 block has the value of 1 , then a tens rod has a value of 0.1 and a ones cube has a value of o.o1. These can then be used to build a conceptual understanding of the		
Place value counters are another useful manipulative for representing decimal numbers.	Tens	Ones - tentis
	((1)
	(10)	(1) 0 (11)
All of the calculation strategies for integers (whole numbers) can be used to calculate with decimal numbers.		

These objectives are explicitly covered through the strategies outlined in this document:

- count from o in multiples of $6,7,9,25$ and 1000
- recall and use multiplication and division facts for multiplication tables up to 12×12
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- recognise and use factor pairs and commutativity in mental calculations
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by o and 1 ; dividing by 1 ; multiplying together three numbers
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths.

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Mathematics
Mastery
Y4 Multiplication

Strategies \& Guidance	CPA
Multiplying by 10 and 100 When you multiply by ten, each part is ten times greater. The ones become tens, the tens become hundreds, etc. When multiplying whole numbers, a zero holds a place so that each digit has a value that is ten times greater. Repeated multiplication by ten will build an understanding of multiplying by 100 and 1000	
Using known facts and place value for mental multiplication involving multiples of 10 and 100 Pupils use their growing knowledge of multiplication facts, place value and derived facts to multiply mentally. Emphasis is placed on understanding the relationship (10 times or 100 times greater) between a known number fact and one to be derived, allowing far larger 'fact families' to be derived from a single known number fact. Knowledge of commutativity (that multiplication can be completed in any order) is used to find a range of related facts.	$30 \times 7=210$ $70 \times 3=210$ $7 \times 30=210$ $7 \times 300=2100$ $3 \times 70=210$ $3 \times 700=2100$

Mathematics
Mastery

Y4 Division

Strategies \& Guidance	CPA
Dividing by 10 and 100 When you divide by ten, each part is ten times smaller. The hundreds become tens and the tens become ones. Each digit is in a place that gives it a value that is ten times smaller. When dividing multiples of ten, a place holder is no longer needed so that each digit has a value that is ten times smaller. E.g. $210 \div 10=21$	
Derived facts Pupils use their growing knowledge of multiplication facts, place value and derived facts to multiply mentally. Understanding of the inverse relationship between multiplication and division allows corresponding division facts to be derived.	$\begin{array}{ll} 210 \div 7=30 & 2100 \div 7=300 \\ 210 \div 3=70 & 2100 \div 3=700 \\ 210 \div 30=7 & 2100 \div 300=7 \\ 210 \div 70=3 & 2100 \div 700=3 \end{array}$

Mathematics Mastery

Strategies \& Guidance
Short division of 4-digit numbers by 1-digit numbers
Pupils start with dividing 4-digit
numbers by 2,3 and 4, where no
regrouping is required. Place value
counters are used simultaneously in a
place value chart, to develop conceptual
understanding.

They progress to calculations that require regrouping in the hundreds or tens columns.

Pupils build on their conceptual knowledge of division to become confident with dividing numbers where the tens digit is smaller than the divisor, extending this to any digit being smaller than the divisor.

Exemplification of this method and the language to use are best understood through viewing the tutorial videos found on the toolkit.

Division of a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths

When you divide by ten, each part is ten times smaller. The tens become ones and the ones become tenths. Each digit is in a place that gives it a value that is ten times smaller.

$24 \div 100=0.24$
 only. For further information, please see our terms and conditions at www.mathematicsmastery.org/terms-and-conditions

Progression in calculations Year 5 + Year 6

Year 5 and Year 6 are together because the calculation strategies used are broadly similar, with Year 6 using larger and smaller numbers. Any differences for Year 6 are highlighted in red.

National Curriculum objectives linked to integer addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers mentally with increasingly large numbers
- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- use negative numbers in context, and calculate intervals across zero
- perform mental calculations, including with mixed operations and large numbers
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign.
\underline{Y}_{5} and $Y 6$ Addition \& Subtraction

Strategies \& Guidance	CPA							
Count forwards or backwards in steps of powers of 10 for any given	Support with place value counters on a place value chart, repeatedly adding the same counter and regrouping as needed.							
number up to 1000000	Ninded	moviens	Hundrass	tens	0 Ones	-	nundramms	noss
Skip counting forwards and backwards in steps of powers of 10 (i.e. $10,100,1000,10000$								

In Year 5 pupils work with numbers up to 1 ooo ooo as well as tenths, hundredths and thousandths.
In Year 6 pupils work with
numbers up to 10 ooo ooo.

Using known facts and

 understanding of place value to deriveUsing the following language makes the logic explicit: I know three ones plus four ones is equal to seven ones. Therefore, three ten thousands plus four ten thousands is equal to seven ten thousands.

In Year 5 extend to multiples of 10000 and 100 o00 as well as tenths, hundredths and thousandths.

In Year 6 extend to multiples of one million.

These derived facts should be used to estimate and check answers to calculations.

Y6 Bar modelling also

Mathematics Mastery

Finding the difference is efficient when the numbers are close to each other 9012-8976

Mathematics
Mastery

Strategies \& Guidance	CPA
Round and adjust Addition and subtraction using compensation Pupils should recognise that this strategy is useful when adding and subtracting near multiples of ten. They should apply their knowledge of rounding. It is very easy to be confused about how to adjust and so visual representations and logical reasoning are essential to success with this strategy.	Addition $54128+9987=54128+10000-13=64128-13$ Pupils should realise that they can adjust first: $54128+9987=54128-13+10000=54115+10000$ Subtraction $78051-9992=78051-10000+8=68051+8$ Pupils should realise that they can adjust first: $78051-4960=78051+40-5000=78 \quad 692-5000$
Near doubles Pupils should be able to double numbers up to 100 and use this to derive doubles for multiples of ten as well as decimal numbers. These facts can be adjusted to calculate near doubles.	$\begin{aligned} & 160+170=\text { double } 150+10+20 \\ & 160+170=\text { double } 160+10 \text { or } 160 \quad+170=\text { double } 170-10 \\ & 2.5+2.6=\text { double } 2.5+0.1 \end{aligned}$

Mathematics
Mastery

Copyright © 2017 Mathematics Mastery. This can be printed out and photocopied by Mathematics Mastery toolkit registered users only. For further information, please see our terms and conditions at www.mathematicsmastery.org/terms-and-conditions

Mathematics
Mastery

Strategies \& Guidance	CPA
Written column methods for subtraction In Year 5, pupils are expected to be able to use formal written methods to subtract whole numbers with more than four digits as well as working with numbers with up to three decimal places. Pupils should be given plenty of practice with calculations that require multiple separate instances of regrouping. In Year 3 and 4 they become more familiar with calculations that require 'regrouping to regroup'. Understanding must be secured through the considered use of manipulatives and images, combined with careful use of language. Pupils should think about if this is the most efficient method, considering whether mental strategies (such as counting on, using known number facts, compensation etc.) may be likelier to produce an accurate solution. Exemplification of this method and the language to use are best understood through viewing the tutorial videos found on the toolkit.	3 1 5 1 4 1 3 $/ 6$ 2 -3 2 2 4 3 9 1 1 9 The term regrouping should be the language used. You can use the terms 'exchange' with subtraction but it needs careful consideration. You can regroup 62 as 50 and 12 (5 tens and 12 ones) instead of 60 and 2 (6 tens and 12 ones). Or you can 'exchange' one of the tens for 10 ones resulting in 5 tens and 12 ones. If you have exchanged, then the number has been regrouped.

[^3]
Progression in calculations

 Year 5 + Year 6

 Year 5 + Year 6}

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- multiply and divide whole numbers by 10,100 and 1000
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- multiply one-digit numbers with up to two decimal places by whole numbers
- use written division methods in cases where the answer has up to two decimal places

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division
- solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts.

Mathematics Mastery

Y5 and Y6 Multiplication

Strategies \& Guidance	CPA						
Multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000 Avoid saying that you "add a zero" when multiplying by ten and instead use the language of place holder. Use place value counters and charts to visualise and then notice what happens to the digits.	When you multiply by ten, each part is ten times greater. The ones become tens, the tens become hundreds, etc. When multiplying whole numbers, a zero holds a place so that each digit has a value that is ten times greater. $102.14 \times 10=1021.4$						
	Thousands	Hundeds			Ones .		nundediths
		$\underset{(100)}{(100)}$			(1) 0		0.10
					(1) 0		
	When you divide by ten, each part is ten times smaller. The hundreds become tens and the tens become ones. Each digit is in a place that gives it a value that is ten times smaller. When dividing multiples of ten, a place holder is no longer needed so that each digit has a value that is ten times smaller. E.g. $210 \div 10=21$ $210.3 \div 10=21.03$						
	Hundieids	Tens		One	- tenths		Whatedthis
	(100)	(10)					
		(10)			-		0.000

Strategies \& Guidance	CPA
Using known facts and place value to derive multiplication facts	Children are encouraged to look for significant figures Smile representation from big maths
Emphasis is placed on understanding the relationship (10 times or 100 times greater) between a known number fact and one to be derived, allowing far larger 'fact families' to be derived from a single known number fact.	
Knowledge of commutativity is further extended and applied to find a range of related facts.	
Pupils should work with decimals with up to two decimal places.	
These derived facts should be used to estimate and check answers to calculations.	

These are the multiplication facts pupils should be able to derive from a known fact

2100.000	700000×3	70000×30	7000×300	700×3000	70×30000	7×300000
210000	70000×3	7000×30	700×300	70×3000	7×30000	
21000	7000×3	700×30	70×300	7×3000		
2100	700×3	70×30	7×300			
210	70×3	7×30				
$\mathbf{2 1}$	$=7 \times 3$					
2.1	$7 \times 3 \times 3$	7×0.3				
0.21	0.07×3	0.7×0.3	7×0.03			
0.021	0.007×3	0.07×0.3	0.7×0.03	7×0.003		

Strategies \& Guidance	CPA
Doubling and halving Pupils should experience doubling and halving larger and smaller numbers as they expand their understanding of the number system. Doubling and halving can then be used in larger calculations.	Multiply by 4 by doubling and doubling again e.g. $16 \times 4=32 \times 2=64$ Divide by 4 by halving and halving again e.g. $104 \div 4=52 \div 2=26$ Multiply by 8 by doubling three times e.g. $12 \times 8=24 \times 4=48 \times 2=96$ Divide by 8 by halving three times e.g. $104 \div 8=52 \div 4=26 \div 2=13$ Multiply by $\mathbf{5}$ by multiplying by 10 then halving, e.g. $18 \times 5=180 \div 2=90$. Divide by 5 by dividing by 10 and doubling, e.g. $460 \div 5=$ double $46=92$ Links to fraction

order to complete
calculations.

Mathematics
Mastery

Strategies \& Guidance	CPA
Formal written method of short multiplication Conceptual understanding is supported by the use of place value counters, both during teacher demonstrations and during their own practice. Exemplification of this method and the language to use are best understood through viewing the tutorial videos found on the toolkit.	
Multiplying by a 2-digit number Formal written method of long multiplication In Year 6 pupils are extended from multiplication by a 1digit number to multiplication by a 2-digit number. Extend the place value chart model used in Year 4, using an additional row on the place value chart. Extend understanding of the distributive law to develop conceptual understanding of the two rows of the formal written method. Dienes blocks can be used to construct area models to represent this. Year 5	

A

Strategies \& Guidance
Short division

 place value knowledge to each step, the thinking goes wrong if you have to regroup.

How many 4s in 8000? 2000 How many 4 s in 500 ? 100 with 1 remaining (illogical) The answer would be 125 .

Sharing the dividend builds conceptual understanding however doesn't scaffold the "thinking" of the algorithm

Using place value counters and finding groups of the divisor for each power of ten will build conceptual understanding of the short division algorithm.

Area models are also useful representations, as seen with other strategies and exemplified for long division.

Exemplification of this method and the language to use are best understood through viewing the tutorial videos found on the toolkit.

[^0]: Copyright © 2017 Mathematics Mastery. This can be printed out and photocopied by Mathematics Mastery toolkit registered users only. For further information, please see our terms and conditions at www.mathematicsmastery.org/terms-and-conditions

[^1]: Copyright © 2017 Mathematics Mastery. This can be printed out and photocopied by Mathematics Mastery toolkit registered users only. For further information, please see our terms and conditions at www.mathematicsmastery.org/terms-and-conditions

[^2]: Copyright © 2017 Mathematics Mastery. This can be printed out and photocopied by Mathematics Mastery toolkit registered users

[^3]: Copyright © 2017 Mathematics Mastery. This can be printed out and photocopied by Mathematics Mastery toolkit registered users only. For further information, please see our terms and conditions at www.mathematicsmastery.org/terms-and-conditions

